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Progress and Bottlenecks in Simulating 
Lattice Gauge Theory with Fermions 

John B. Kogut 1 

We present a progress report in lattice gauge theory computer simulations 
which includes the effects of light, dynamical fermions. Microcanonical and 
hybrid microcanonical-Langevin alogrithms are presented and discussed. A 
method for "accelerating" stochastic differential equations and defeating critical 
slowing down is reviewed. Physics applications such as the thermodynamics of 
quantum chromodynamics, hierarchal energy scales in unified gauge theories, 
and the phase diagram of theories with many fermion species are discussed. 
Prospects for future research are assessed. 
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1. LATTICE GAUGE THEORY WITH FERMIONS 

The four-dimensional Euclidean action density S for lattice gauge theory 
with fermions reads generically 

S = ~ ~iED(U) + m]o.Oj + So(U) (1.1) 
ij 

where ~'t is a Grassman field at site i, Au= [D(U)+m]o. is the gauge 
covariant Dirac operator, and S0(U) is the pure gauge field action on the 
lattice. (1~ The precise form of the gauge covariant discrete difference 
operator D(U) depends on the lattice fermion method employed. We will 
be considering staggered fermions (2~ in this article, so 0i will be one com- 
ponent object and the fermion contribution to (1.1) reads 

~ ( n )  ~ ~,(n)[Uu(n)O(n+#)-g+(n-#)O(n-#)]+mO(n) (1.2) 
n ,u=l 
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where tl.(n ) are phase factors that carry the spin-�89 character of the con- 
tinuum Dirac field and U.(n) is the SU(3) rotation matrix residing on the 
link between sites n and n + #. For the purposes of this discussion all these 
details are not essential. Suffice it to say that (1.2) has the good feature of 
describing four species of Dirac fermions which become massless when 
m ~ O  in a natural fashion. ( ~ )  is a good-order parameter for chiral 
symmetry, one of the two basic quantities (confinement is the other) of 
interest here. 

Since our subject is the status of computer simulations of lattice gauge 
theory with fermions, our interest focuses on the partition function 

Z= I H dt~i H d~j H dUl,(n) e x p ( - S )  
i j n,,u 

(1.3) 

Since the ~O i are anticommuting numbers, a direct simulation of (1.3) is not 
practical. Instead the fermions can be integrated out of (1.3) since (1.1) is a 
quadratic form in 0 

Z = f [I dUu(n) det [D(U) + m] exp[ - So(U)] 

=f l~dU,(n)exp(-So(U)+trln[D(U)+m]) (1.4) 

It is not so clear, however, that this step represents real progress since tr 
ln[D(U) + m] is an effective, nonlocal interaction among the U variables. 
Such actions are not welt-studied and classified in the context of traditional 
statistical mechanics approaches to critical phenomena. At least the deter- 
minant in (1.4) is positive semidefinite for staggered fermions. 

We all recognize the physical origin for the determinant here. It 
represents closed fermion loops, virtual quark-antiquark pairs, and the 
plus sign, + t r  l n [ D ( U ) + m ] ,  in (1.4) is responsible for the perturbation 
theory rule: - 1  for each closed fermion loop. 

Various numerical approaches to evaluating (1.4) and physically 
relevant atrix elements have been proposed. Monte Carlo methods, the 
so-called pseudo-fermion algorithms, (3) are being studied as well as 
microcanonical (4'5) and Langevin equations. (6) I will concentrate on the lat- 
ter two methods in this review. At this time all such algorithms are con- 
troversial--we have not studied enough cases with enough computer power 
to delineate the clear successes and limitations of each method. However, 
such studies are being vigorously pursued at this time and solid answers 
concerning the reliability, scope, and error estimates in each method should 
be forthcoming. 
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2. T H E  M I C R O C A N O N I C A L  E N S E M B L E  A N D  M O L E C U L A R  
D Y N A M I C S  

We begin by reviewing the molecular dynamics approach (4~ to 
problems in equilibrium statistical mechanics. Consider a boson field ~b 
which might be defined on a lattice. The theory has an action S(~b) which 
determines its path integral and equilibrium statistical mechanics proper- 
ties. This system has no natural dynamics which would govern its approach 
to equilibrium. However, it can be given dynamics in several ways--the 
molecular dynamics and the Langevin equations are two alternatives. In 
the molecular dynamics approach we associate S(~b) with a potential 
V(fb) =_ fl-lS(fb) and construct a fictitious Hamiltonian 

V - - 1 2  H =  T+  = ~ p / +  V(~b) (2.1) 

where i label lattice sites and p~ will soon be interpreted as the momentum 
conjugate to ~b~. Using (2.1) we could consider the classical statistical 
mechanics based on the invariant phase space I~idp~dfbi and the 
Boltzmann factor exp(-BH).  Since the p~ integrals are trivial, this for- 
mulation reduces to the original path integral formulation of the boson 
field theory. 

To give this approach some meat, we identify ps with the momentum 
conjugate to ~b~ by introducing a 5th dimension r into the problem 

p, = d~/d~ (2.2) 

Then the ensemble given by the phase space measure I-Ii dpi d~i and the 
Boltzmann factor exp( - f lH)  defines the usua! canonical ensemble of 
classical statistical mechanics. There is still no advantage in all this until 
one passes to the microcanonical ensemble. Now the energy is fixed, H = E, 
and the measure in phase space is lqi dpi dq)i 6 ( H - E ) .  Observables in the 
system O(p, ~) have expectation values 

<o> = ! f H o(p, (2.3) 
i 

If 0 is just a function of ~b, then standard arguments apply to show that 
(0 ) ,  calculated in the microcanonical ensemble, is the same as ( 0 )  
calculated in the canonical ensemble in the large volume V ~  ov limit./<5) 

But ( 0 )  can also be calculated from the time evolution of the classical 
system. This is the molecular dynamics approach to the problem. Let 
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[~b(z), p(z)] describe the phase space point of the physical system. Then a 
time average of 0 can be calculated 

fo ( 0 )  = l i m r ~  1 O[p(z),~)(z)]dr (2.4) 

This time average reproduces the expectation value (2.3) if the ergodic 
hypothesis works for this physical system. Roughly speaking, one must 
assume that the Hamiltonian dynamics of the system carry the phase space 
point [~b(z), p(z)] uniformly over the energy shell H = E. 

The final ingredient in this molecular dynamics approach is the com- 
putation of the coupling fi given the system's fixed energy. The necessary 
correspondence follows from the equipartition theorem for the kinetic 
energy T 

(T> = l f l  1N (2.5) 

where N is the number of independent, excited degrees of freedom in the 
system. 

Equation (2.4) and (2.5), coupled with the Hamilton equations of 
motion following from (2.1) and (2.2), represent a clear alternative to 
Monte Carlo simulation procedures of pure bose systems. This formulation 
has several interesting points: (1) It is fully deterministic, (2) it involves 
ordinary coupled differential equations, and (3) it generalizes to a practical 
method for fermions. Let's review the fermion method before discussing its 
strengths and weaknesses further. 

Now we wish to invent a classical system in 4 + 1 dimensions invol- 
ving only complex numbers whose molecular dynamics generate the path 
integral equation (1.4) with the infamous fermion determinant. Consider 
the Lagrangian (5) 

= -So(U) + ~ ~, (}~(n) P(},(n) + Z ~[A*A] ~ j  - 09 2 ~ Cti~i (2.6) L 
n,p  ij ( 

where A is the lattice Dirac operator defined earlier, and/5 is a projection 
operator diag (1, 1, 0) which picks out independent variables in the SU(3) 
matrix Uf,. Thus L consists of kinetic energy terms for the gauge fields, the 
"pseudofermions" ~b, and potential terms for both. A*A appears in L rather 
than A itself to insure positivity. This unusual form for the pseudofermion 
kinetic energy will generate the fermion determinant with the correct sign. 
Note that this L is local because A couples only nearest neighbors. 

It is straightforward to identify the canonical momentum of this 
physical system 

p~(n) = (J~(n) Pi= [~tA*AJi (2.7) 
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and construct the Hamiltonian 

H = 1 ~ p2 + Z Pt(AtA) -1p + So(U) + co 2 Z (btq) (2.8) 

and consider the Hamiltonian equations of motion 

d 
p t  =~_~ l-At(U) A(U)q~] = -c~2~b 

So(U) + ~t_~7 [At(U) A(U)](b b=t)= (2.9) 

These equations are generic in character. The real equations which are 
simulated choose a convenient parametrization for the Uj,(n) matrices and 
incorporate constraints appropriately. (7) But the point to be stressed here is 
simply that (2.9) is a tractable set of coupled ordinary differential 
equations. The fermions introduce the complication of requiring the 
solution of a sparse set of linear equations for q~ of the form AtAr . . . .  for 
each time step. This is done efficiently with good control of errors by stan- 
dard methods such as the conjugate-gradient algorithm. As the bare quark 
mass approaches zero, these iterative sparse matrix algorithms require 
more computer time, but they prove to be quite practical (see the second 
reference in Ref. 5, for example). 

Our last task is to check that L really gives the original path integral. 
The canonical ensemble based on (2.8) reads 

Z = f Du Dp DqD Dr t DP DP* exp( - H/T) (2.10a) 

All the variables except U enter H quadratically, so the integrals can be 
done 

Z = const f D U det 2 A (U) exp [ - So( U)/T] (2.10b) 

which is the required answer except for the second power of the deter- 
minant. However, since A tA in the staggered fermion method does not 
couple nearest-neighbor pseudo-fermion fields, ~b can be set to zero on 
every other lattice site (see, e.g., the second reference in Ref. 5). 

Now we see clearly the character of the tricks in (2.6) and (2.8). The 
pseudo-fermion kinetic energy in L is �89 2 with m~AtA.  When the H is 
constructed we have p2/2m, and the (AtA) -1 here was responsible for the 
positive power of det AtA in (2.10b). The nice feature of this scheme is that 
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the full nonlocal character of the determinant is avoided by the algorithm. 
In each time step A*A(b . . . .  is solved for q~; this is a local operation since 
A*A only couples nearby degrees of freedom. 

The last ingredient in the algorithm is the calculation of the coupling 
constant /~. If we identify the number of active, independent degrees of 
freedom N* of the system, this can be done using the equipartition theorem 

�89 = ( T> = ( ~A*A() + �89 ~, ~*/3~> (2.11) 

The calculation of N* for particular parametrizations of the U matrces is 
discussed in Ref. 7. 

3. MOLECULAR D Y N A M I C S  APPROACH TO THE 
CANONICAL ENSEMBLE 

The "naive" microcanonical fermion and gauge field algorithm of 
Sec. 2 can be generalized and improved in many ways. Let's discuss a 
variation on the original method which has three interesting features: 

1. It is completely deterministic. 

2. It simulates the canonical ensemble. 

3. It treats fl as an input, rather than an output, variable. 

The idea here is to add 1 df s which will acts as a heat bath for the 
original microcanonical system. If its kinetic and potential energies can be 
chosen appropriately, properties 1 to 3 follow. Since the new variable 
changes the system from one at fixed energy to one at fixed temperature, 
we will call it a "demon" following a similar, but different, idea used for the 
Ising model3 8) 

Let's illustrate the idea for a set of N point particles (1~ 

t=- 21mir2--q)(  {r } ) (3.1) 
i 

which could be simulated by the usual molecular dynamics equation. 
Instead, introduce a demon s and a Lagrangian describing the system of 
N + 1 particles 

L=Zlm2~s2fZ--(b({r})+�89 1)Tln s (3.2) 
i 

and simulate the equations of motion here. To see that the new system 
described the original N point particles at temperature T, form the 

Hamil tonian  from (3.2) 

H=Zp~/2m~s2+(b({r})+ 2 (3.3) p s/2Q + ( N + 1 ) TIn s 
i 
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and consider the microcanonical ensemble 

= f alp, ds H dpi dri 6 ( H -  E) (3.4) Z 
i 

Rescale p ~ p/s, do the s integral using the delta function, and do the Ps 
Gaussian integral trivially, to find 

; { t 
which is the desired answer. 

In retrospect we see that the logarithmic potential for the demon was 
essential to generate the Boltzmann factor in (3.5). 

The nice features of the molecular dynamics simulation of (3.2) are: 
(1) T can be chosen as an input variable, (2) 1/V effects, which distinguish 
the microcanonical and canonical ensembles, are suppressed, and (3) 
equipartition can be monitored clearly through (p~/2Q) = T/2. 

This approach to field theory simulations has been tested on a number 
of systems. The two-dimensional planar spin model was simulated by 
Monte Carlo, naive microcanonical, and the demon algorithms. The 
average action, topological charge (the theory has a vortex driven phase 
transition first described by Kosterlitz and Thouless), spin-spin correlation 
function, and demon kinetic energies were monitored. The Monte Carlo 
and demon simulations were in excellent agreement on 152 and 302 lattices 
and their expectation values differed only at 1/V (V= volume) effects from 
the naive microcanonical results. 

The demon trick is easily generalized to gauge theories with fermions. 
The Lagrangian becomes 

L = �89 ~ s 2 tr (s flSo(U) + ~?A t(U) A(U)~ - c~2(~/s 2 

+ �89 (N+ 1) r l n  s (3.6) 

Long runs (15,000 sweeps) have been carried out at fl = 6/g2= 5.512 on a 
4• lattice at fermion mass of m=0.10 where there is extensive 
microcanonical data. ~9) The two algorithms are in very good agreement but 
the demon results showed less severe long time correlations, as one would 
hope. 

4. F A C I N G  E R G O D I C I T Y  B R E A K I N G  S Q U A R E L Y  

Chemical physicists have considerable experience with molecular 
dynamic simulations of systems containing 5-50 df. These systems can be 
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mapped onto a polymer of 5-50 monomers which interact through strong 
nearest-neighbor harmonic forces perturbed by weaker anharmonic effects. 
In these cases the simplest molecular dynamic algorithms fail badly because 
the normal modes do not echange energy on short enough time scales for 
practical simulations. (1~ In fact, if the anharmonic forces in the system are 
weak enough the KAM theorem applies, which implies that the system will 
not sample the energy surface uniformly. In these cases of relatively few 
degrees of freedom ergodicity breaking is easily monitored in the 
simulation. The breaking is clear and obvious. In our field theory 
applications it is harder to monitor potentially disasterous effects such as 
these. However, in asymptotically free theories where the ultraviolet fixed 
point lies at vanishing coupling, we must expect trouble with ergodicity as 
the continuum limit of the lattice theory is made. In addition, at strong 
coupling where correlation lengths are small ergodicity breaking is also 
expected. In simulations at intermdiate coupling obvious failures of 
ergodicity have not been found in SU(2) and SU(3) gauge theories on 
"large" lattices (84, 83x 16, 6 x 123, for example), but some observables 
have shown dangerous long-time orrelations. Certainly the microcanonical 
algorithm should be improved. In fact, the physical chemists have adopted 
the molecular dynamics technique to physical systems which are not 
ergodic. The "quick fix" they use is simply to "refresh" the velocities in the 
system from time to time, i.e., the velocities vi(z) are put into a Boltzmann 
distribution at z0 and the system is evolved from r0 by molecular dynamics 
to the time z0+z* where the velocities are "refreshed" again, etc. This 
method has become the standard for many chemistry problems and has 
been discussed by Berne, Andersen, and others extensively. (9'1~ 

Luckily there is more to such "quick fixes" than just guesswork. They 
are closely related to Langevin dynamics and can be placed on a solid 
theoretical footing. (11) We will refer to such schemes as "hybrids"--they 
combine the strong points of the naive microcanonical and the Langevin 
algorithms into a new, improved method. 

Consider a simple example: an action S(q) and a bose variable q.(~l) 
We want to calculate an expectation value 

1 ( .  

( F(q) ) = -~ J dq F(q) exp[ - S(q)] (4.1) 

In the microcanonical approach, the system is given dynamics 

O(z) = -OS(q)/Oq (4.2) 

and expectation values are replaced by time averages 

( F ( q ) ) =  lim l f rdzF[q(z)]  (4.3) 
T ~  T2o 
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In the Langevin approach, the system is given dynamics with explicit white 
noise 

(l(r)  = - Q S / ~ q  + rl(z) 

(r/(r) ~/(r')) = 26(r - r') (4.4) 

and (4.3) is applied again. The stochastic differential equation (4.4) causes 
q(r) to execute a forced random walk such that it covers phase space with 
the weight expl- - S(q)] dq. 

There is an intimate relation between (4.2) and (4.4), which is best 
seen by replacing the differential equations by discrete difference equations. 
The Langevin system becomes, denoting ~,, as noise 

q , +  l = qn + A ~ ,  - � 8 9  

GG,=G., 

G +  1 - r .  = �89  2 ( 4 . 5 )  

while the microcanonical reads 

qn+ 1 = 2qn - q , _  l - d 2 S ' ( q , )  

"On+ 1 - ' c n ~ - - Z ~  (4.6) 

which can be written more suggestively as 

q,+~ = q, + l(qn+ 1 - -  q , - 1 )  - 1 d z s ' ( q , )  (4.7) 

So, we have the correspondences 

Langevin noise Microcanonical velocity 

~ ' n +  1 - -  "On ~ 1 A 2  27n+ 1 - -  "On ~--- Z~ 

Each scheme has the following features: (1) Langevin has explicit noise, so 
it is ergodic by construction. However, it samples the phase space very 
slowly in many cases because q(r) executes a forced random walk which, if 
the noise term dominates, fills space at a rate N ~/z, N =  number of time 
steps of (4.5). (2) Microcanonical dynamics follows the classical equations 
of motion so it is as efficient as possible in probing the important regions of 
phase space locally. Also, its time step is large, so it moves along its trajec- 
tories rapidly. However, it may not be ergodic, i.e., for long times it may 
get trapped into regions of phase space which are only accessible to the 
Langevin simulation because of its explicit noise. 



780 Kogut 

All this suggests a hybrid method which combines the best features of 
both algorithms. (11) In the hybrid scheme a time step will be either 
Langevin (probability pA) or microcanonical (probability 1 - p A )  

q,+ l =q ,  + Av , - �89  (4.8a) 

with 

~(q,+l - q,-~)/2A 
v, = ( ~, otherwise, probably pA 

"~n+ 1 = ~'n -~ z] (4.8b) 

One can attempt to optimize this algorithm by choosing p appropriately. 
The generic best choice is to set p to twice the frequency of the "slowest 
mode" in the system. (H) Inspecting the observables of a typical 
microcanonical run one can find slowly relaxing modes and estimate p. The 
idea here is the following: The microcanonical algorithm permits the 
system to sample a finite region of phase space efficiently for a fixed time 
interval. That time should be as long as the period of the slowest mode in 
the system. Then it is best to "refresh" the system, so it can move to a com- 
pletely new region of phase space. This is done with the (relatively unlikely) 
Langevin step. 

These ideas can be implemented for lattice gauge theory with fermions. 
We begin with the molecular dynamics Lagrangian for lattice gauge theory 
with fermions 

n,# ij 

- 0)2 Zi  q~ ~bi - /3  Z (tr UUUU + b.c.) (4.9) 

where A(U) is the hopping matrix of staggered fermions, /s = diag(1, 1, 0), 
and ~bi is a complex field residing on every other lattice site. To implement 
the hybrid algorithm on (4.9) we use the fact that ?2, ~, and ~b appear in 
three quadratic terms. Therefore, at any time step in the evolution of the 
molecular dynamics equations one can replace the U fields, say, by a com- 
pletely new field configuration in the Boltzmann distribution 
e x p ( -  i y, ~/3~) by standard formulas. Similarly ~ and ~b can be replaced 
by new random fields in the appropriate distributions at chosen intervals. 
Some care must be exercised with q~ because of the matrix character of the 
second term in (4.9). Extensive tests and algorithm tuning on small asym- 
metric lattices which simulate finite temperatures have been made. The 
expectation value of the pure gauge field action (the plaquette), the Wilson 
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line (the exponential of minus the excess free energy for a heavy quark in 
the vacuum), ( f rO)  (the chiral symmetry order parameter), and quark and 
g!uon energy densities have been measured. In Fig. 1 we show the time 
correlatio data for the Wilson line. The hybrid algorithm was run with a 
discrete time step dt =.02 for 10,000 sweeps on a 2 x 43 lattice, and noise 
was applied at regular intervals ranging from every step (Langevin) to 
every 1000 sweeps. Figure 1 shows that the minimum correlation time 
occurs when noise is applied every 50+20  sweeps. Since dt---.02 this 
corresponds to a "physical time" of 1 4-.4 units. Note that the hybrid 
algorithm is more than 3.3 times as efficient as the Langevin limit. In fact, 
the correlation times for all the matrix elements could be reduced to 2 or 3 
time units by applying noise to the system at intervals of . 5 -  2 time units. 
This favorable result also occurs on larger lattices, 4 x 83 and 6 x 103. 
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Fig. 1. Time correlation length vs sweeps between Langevin updates. 
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5. BEATING CRITICAL S L O W I N G  D O W N  

One of the most serious limitations of computer simulation studies of 
critical behavior is the ned to run programs longer on larger lattices as the 
parameters of one's lattice system are tuned closer to the system's critical 
point. Larger lattices are needed because the system's correlation length 
diverges at the critical point. Longer runs are needed because the time 
correlation length--the correlations between configurations as a function of 
the time parameter in the Langevin or microcanonical schemes--also 
diverges at the critical point. For stochastic methods such as orginary 
Monte Carlo and Langevin algorithms, the time correlation length grows 
as the square of the ordinary correlation length. Therefore, to achieve the 
same accuracy in different simulation measurements of a d-dimensional 
physical system, the total computer time must grow as the (d+ 2)-power of 
the correlation length. This phenomenon is called critical slowing down 
and has limited the use of simulation methods significantly in the past. 

Within the context of microcanonical and stochastic differential 
equations, such as the Langevin equation, there is an interesting proposal 
to eliminate critical slowing down. (12) Consider the microcanonical 
Lagrangian for the planar spin model in two dimensions 

The trajectory {0i(t), i=  1, 2 ..... number of sites} is computed numerically 
from the discrete from of the Euler-Lagrange equation for OM). One wants 
to choose the discrete step size dt large so that the trajectory explores phase 
space rapidly and efficiently. A higher-order Runge-Kutta algorithm might 
be employed to achieve this while maintaining good accuracy. The rapidly 
varying ultraviolet modes in the system determine the largest possible time 
step permissible--if dt is too large the continuity in the time development 
of the ultraviolet modes is lost and the time evolution of the discrete system 
diverges. Accurate measurements of matrix elements which are sensitive to 
just the ultraviolet modes of the system are not the most interesting. 
Typically the physics of the critical point and the continuum limit of the 
lattice system is found at length scales on the order of the correlation 
length. These infrared modes are extremely smooth and their time 
evolution suffers from critical slowing down. One would like to evolve 
these spatially smooth modes with a large discrete time step while leaving 
the time step for the spatially erratic ultraviolet modes small. It is easy to 
introduce an effective time step whose size is momentum-dependent to 
accomplish this. Change the microcanonical Lagrangian to read 

1 
L = .~ ~ O,(V: + m2)O,- ~ ~ cos(Oi-- Oj) (5.2) 

<o) 
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Since we have only altered the kinetic piece of the Lagrangian and have left 
it quadratic in 0i, the equilibrium microcanonical ensembles generated by 
(5.1) and (5.2) are identical. Considering (5.2) in momentum space we see 
that the effective time step behaves as 

dteg = dr(p) = [dto/(p z + mZ) 1/2 ] (5.3) 

so the time step for the infrared modes, small p, will be suitably large if we 
choose m, an infrared cutoff, small. A similar improvement can be made in 
the Langevin equation for the planar model. Since the time step of the 
Langevin scheme is proportional to the square of the time step for the 
microcanonical scheme, the scaling relation reads 

dt~ff = dto[(p 2 + rn 2) .... /(p2 + m2)] (5.4) 

In practice the propagator (p2+m2) and its mximum value in (5.3) and 
(5.4) are replaced by their lattice counterparts. 

Before considering the results of numerical experiments, consider two 
important technical issues here. First, the acceleration method presented 
here is based on free field theory, i.e., the replacement of 1 ~ V  2 in (5.2) 
would be optimal for a free field theory. Therefore, it is possible that the 
method is not as effective as one would naively expect for interacting 
systems whose dynamics are highly nonlinear. In the case of the planar 
model, however, tests of the acceleration method, both above and below 
the Kosterlitz-Thouless transition where topologically significant vortices 
play an important role, have been very successful. The generality of naive 
acceleration methods will be interesting to understand. The second issue 
concerns the numerical implementation of the method. Since (5.2) involves 
V 2 in the kinetic energy, V 2 must be inverted at each time step to evolve the 
system {0i(t)} forward in time. This can be done by means of the fast 
Fourier transform (FFT) algorithm. The computer time for this operation 
grows as cVln V, where V is the number of degrees of freedom of the 
system and c is a constant of order unity. So, this additional ingredient in 
the algorithm slows it down negligibly. All supercomputers and array 
processors have highly tuned FFT routines in their libraries, so the scien- 
tific user can incorporate this new method into existing codes almost 
painlessly. 

The results of a numerical study of the accelerated Langevin equation 
for the planar model are shown in Figs. 2 and 3. A 16 x 16 lattice was 
chosen and the temperature was set to 1.167, slightly above the Kosterlitz- 
Thouless critical point in the vortex phase. In Fig. 2a-c we show the time 
correlation function for high, medium, and low momentum components of 
the spin-spin correlation function. Note the critical slowing down 
here--the temporal correlation length for the low momentum mode of the 
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Fig. 2. The time correlation function of the high, medium, and lo m o m e n t u m  components  of 
the spin-spin correlation function of the planar model are shown. The naive Langevin 
algorithm was used. 
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Fig. 3. Same as Fig. 2, except the algorithm has been accelerated. 
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corelation function is almost an order of magnitude greater than that for 
the high momentum mode. In Fig. 3a-c we again show the time correlation 
function for the spin-spin correlation function, but now the algorithm has 
been accelerated. Note that the temporal correlaltion lengths are indepen- 
dent of momentum, as advertised! 

The generalization of the acceleration procedure to gauge theories is 
particularly important because the spatial dependence of composite 
propagators must be masured well to determine the masses of the states of 
quantum chromodynamics. This problem is under study. 

6. Q U A N T U M  C H R O M O D Y N A M I C S  S I M U L A T I O N S  

Now let's discuss the status of large scale simulations of SU(2) and 
SU(3) gauge theories with four light, dynamical Dirac fer- 
mions--simulations close to the real theory QCD. Various projects are in 
progress. 

First is the thermodynamics of the continuum field theory. Here one 
wants to understand QCD at finite temperature and study the transition 
from hadronic matter to a quark-gluon plasma. One wants to know if 
there are true nonanalyticities in the thermodynamic quantities of interest 
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Fig. 4. Scaling curves of (~@) vs 13 with %,-=0 (quenched) and N/=4. 
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such as the entropy and internal energy densities. The SU(2) and SU(3) 
theories without fermion feedback showed such nonanalyticities, and their 
behavior is well-understood in the context of traditional statistical 
mechanics. The situation is relatively unclear when fermion feedback is 
accounted for and the subject is quite controversial. A chiral restoring 
transition is certainly present, but fermion screening may be qualitatively 
similar for all temperatures rendering the thermodynamics of the "tran- 
sition" smooth. This is particularly interesting question for the groups 
developing fermion algorithms, because they are completely dependent on 
numerical methods for the answers to these physics questions. 

The SU(2) theory has been studied on a 6 x 123 lattice at six fl values 
and three fermion mass values (0.10, 0.075, and 0.050) with 5" 10 3 to  10 4 

sweeps of the microcanonical algorithm for each point. The SU(2) spec- 
trum has been studied similarly on a 83x 16 lattice, and an analogous 
SU(3) project is underway. 

In Fig. 4 we show the scaling regions of the pure SU(2) theory and the 
theory with NI-= 4 species of fermions. The agreement with asymptotic 

0.:50 

0.25 F \ r flO. ::>5 

0.201- \ r qo.20 

O. 15F \ / -i0. 15 
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Fig. 5. 
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( ~ )  and WL (Wilson line) vs fl on a 6x  12 3 lattice for SU(2) gauge theory with 
four species f quarks. 

822/43/5-6-5 
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freedom for <t~O) is quite nice. Note that fermion feedback shifts the 
< ~ )  curve toward stronger coupling as Nr is increased and the slope of 
l n < ~ )  vs /~ changes appropriately. It appears that the scaling region for 
the Nj=  4 theory begins at/~ = 1.85. 

In Fig. 5 we show <t~O) extrapolated to zero mass and the Wilson 
line (WL) for a 6 x 123 lattice in the SU(2), NF--4 theory. It appears that 
the transition from hadron to quark-gluon matter is abrupt. It is crucial to 
confirm or refute this result with other algorithms. 

Further evidence for this picture of the thermodynamics of quarks and 
gluons comes from applications of the hybrid algorithm. (13~ We consider 
SU(3) gauge theory with four species of quarks. 

The lattice theory was simulated on a 4 x 83 lattice with bare quark 
masses of 0.10, 0.075, and 0.050 so that zero mass extrapolations could be 
done. We expect a fluctuation-induced chiral symmetry-restoring transition 
in the continuum limit. However, although the pure SU(3) gauge field has 
a first-order deconfining phase transition signaled by a discontinuous 
Wilson line, that behavior should not persists in the theory with dynamical 
quarks because quark pairs scren long-range color forces at all tem- 
peratures. However, the chiral symmetry-restoring transition could result in 
a discontinuous change in the dynamically generated quark mass which 
could effect the thermodynamics of the system dramatically. We located the 
critical couplings/~ for both the pure gauge theory and the full theory with 
light quarks. The pure gauge theory showed a clear first-order deconfining 
transition at /~ = 5.725 + .025 and the full theory with a bare quark mass 
rn = 0.050 had a chiral symmetry-restoring transition at /? = 5.000 + .025. 
The characters of these transitions were compared by searching for 
metastable states, as shown in Fig. 6. In Fig. 6a we show the time history of 
the Wilson line for the pure gauge theory at/~ = 5.725 for both a confined 
and an unconfined initial configuration. Ten thousand sweeps of the 
algorithm were run with dt = .02 with noise applied every .75 time units to 
the U fields. The two-state signal in Fig. 6a is clear evidence for a first-order 
transition. The same procedure was followed for the theory with light fer- 
mions at/~ -~ 5.025 and the evidence for a hard first-order transition is lost 
as shown in Fig. 6b. However, as shown in Fig. 7, the transition between 
the hadronic and quark-gluon phases is very abrupt---the energy density 
e/iO, for example, changes from 0.00 +_ 5.00 to 42 +_ 4.0 as/~ changes from 
5.000 to 5.025. If asymptotic freedom applies to this data, the fractional 
change of the physical temperature over this/3 interval is only 3.8 %. The 
statistics accumulated and the resolution in /~ are far superior to earlier 
simulations, and they strengthen the controversial result that the finite tem- 
perature transition in quantum chromodynamics is abrupt. 
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Fig. 6. (a) Time histry of the Wilsoon line at the first-order phase transition of the pure 
gluon theory. (b) A time history in the theory with fermion feedback. 
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7. HIERARCHY PROBLEMS IN UNIFIED GAUGE THEORIES 
We want to illustrate that lattice methods can be applied to theories 

"beyond QCD" which might have interesting mass scales at arbitrarily high 
energies. Unfortunately, the most interesting schemes involve chiral fer- 
mions and these cannot be attacked by lattice methods because we cannot 
place a single neutrino on the lattice with a conventional action. Anyway, 
in the realm of vector theories we can ask whether a theory can support 
disparate mass scales without the need to fine-tune a fundamental 
parameter. Chiral symmetry breaking and asymptotic freedom can conspire 
to do this, as suggested in the present context by Raby, Dimopolous, and 
Susskind. (~4) By considering single gluon exchange, they suggest that when 
Cig2.~O(1) massless fermions of color charge, Cr will condense into a 
chiral condensate. By asymptotic freedom, this criterion leads to an 
exponential sensitivety of the characteristic energy scale of the condensate 
to the fermion's color charge. Changes of scale of 10 5-1~ are possible in 
such "technicolor" schemes, although realistic models do not exist. 
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The validity of the underlying feature of the scenerio, that C f g  2 ~ O(1 ) 

leads to condensation, can be tested by lattice methods. In Fig. 8 we show 
data for the pure SU(2) theory (NI= 0) in which fundamental and adjoint 
condensates have been measured. The l=  ! condensation occurs at much 
weaker coupling (shorter physical distances) in general support of the 
scenerio. 

The next question is: Does this hierarchal structure survive the 
inclusion of fermion feedback? Let's consider the answer in two different 
models. First we can simulate SU(2) with N r = 4  Majorana quarks. (15) 
Two mass scales can be searched for by simulating the theory at finite 
temperature and measuring ( ~ )  for the l=  1 quarks and the string 
tension for I=�89 static quarks. In Fig. 9 we show data from a 4 x 8  3 
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simulation depicting <~7~ > and the Wilson line. Clearly the deconflnement 
and the chiral symmetry restoration temperatures are distinct. This is an 
encouraging result. 

Finally, we can simulate a model with so much fermion feedback that 
asymptotic freedom is lost but the problem of multiple energy scales can be 
posed in the cutoff theory anyway. Consider SU(2) with four flavors of fun- 
damental Dirac fermions and four flavors of adjoint Majorana fermions. 
The results of a finite temperature simulation (4 x 8 3 lattice) are shown in 
Fig. 10 and support the hierarchy picture. 

8. L A T T I C E  G A U G E  T H E O R Y  W I T H  M A N Y  F L A V O R S  

Studies of the type described in the previous sections lead us to con- 
sider the phase diagram of lattice theories in the variables N i and g2. It is 
then natural to ask about phase transitions in the N I -  g2 plane and how 
they effect the NF= 2, 3, and 4 simulations of most direct relevance of 
QCD. In Fig. 11 we show a speculative phase diagram, uT) How does one 
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Speculative phase diagram for SU(3) lattice gauge theory with dynamical fermions. 
In region II, ( ~ ) = 0 ;  otherwise (~0)4:0.  

arrive at such a guess? Along the N/axis we can consider the continuum 
theory's Callan-Symanzik function 

g3 g5 

f l ( g ) = - f l O ' l - - ~ z - f l ,  (16rc2)2 (8.1a) 

where 

flo = 11 - 2Nr/3 fl~ = 102 - 38Nf/3 (8.lb) 

Note that flo changes sign at Ni= 16.50 and J~l changes sign at Nr = 8.05. 
For Ni> 16.50 and g2 ~ 0  the theory is not asymptotically free, so a small 
g2 at short distances gives rise to a yet smaller g2 at larger distances. This 
strongly suggests that ( ~ ) = 0  in this region of the phase diagram. 
However, for large N s and large g2 strong coupling expansions simply that 
( ~ , ) r  These last two observations suggest that the Ns-g  2 phase 
diagram separates into two prts labeled with the order parameter ( ~ 9 ) .  

Note that if the ( ~ b ) = 0  region dips, as shown in Fig. 11, the 
crossover from strong to weak coupling of the Nf = 3 theory will be effected 
by the nearby structure. It is natural to speculate that very abrupt 
crossover phenomena is present in the Nf = 3 theory as a consequence of 
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the rich N j . -  g2 phase diagram. Such effects may obscure the approach to 
continuum behavior of asymptotically free theories with fermions. 

Some evidence for the line of transitions of Fig. 6 has already appeared 
in computer simulations. (17) Figure 12 shows a microcanonical simulation 
of SU(3) with N s = 12 on a 6 4 lattice. A clear signal for a first-order trans- 
ition as a function of/7 is seen. In fact, this figure reminds us of a useful 
feature of microcanonical simulations: The absence of energy fluctuations 
can stabilize metastable states on finite systems leading to particularly clear 
evidence for first-order transitions (7) 

Further studies of this type should elucidate Fig. 11. Simulations at 
variables N s should reach the small g2, Nf,~ 8-16 region of the diagram 
where little theoretical insight is available. For large N s. and large g2 the 
transition line is expected to be first-order, (16) as found in Fig. 12. 

9. F U T U R E  D I R E C T I O N S  

The field of computer simulations of fermion systems is in its infancy. 
Algorithm development, testing, and error analysis, are crucial projects 
here. This is a controversial field at the moment and direct comparisons of 
different fermion algorithms are needed before proceeding to additional 
applications. 

With a reliable algorithm in hand it will be particularly interesting to 
study the mass spectrum of QCD with fermion feedback. The validity of 
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the naive quark model and the role of the axial anomaly and topology in 
the spectrum and thermodynamics will become topics of study. The brute 
force measurement methods of present-day studies will be sorely tested by 
fermion feedback. For example, multi-pion states will appear in composite 
quark propagators and will interfere with the mass estimates of resonance 
states such as the meson. We will probably have to develop more subtle 
simulation methods which can extricate resonance states from the con- 
tinuum to make a direct assault on the hadron spectrum, as as done for the 
SU(3) N i =  0 theory. 

Progress in the field over the next six months should clarify some of 
these questions. 
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